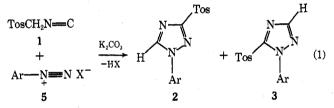
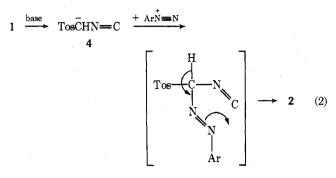
- (3) A. H. Beckett, N. J. Harper, and J. W. Clitherow, *J. Pharm. Pharmacol.*, **15**, 349 (1963).
- (4) A. H. Beckett and A. F. Casey, J. Chem. Soc., 900 (1955).
 (5) A. H. Beckett, G. Kirk, and R. Thomas, Chem. Ind. (London), 1418
- (3) A. H. Beckett, G. Kirk, and H. Thomas, *Chem. Ind.* (*London*), 1416 (1960).
- (6) Inversion stereochemistry for the formation of aziridines and their ring opening by nucleophiles is well established. See O. C. Dermer and G. E. Ham, "Ethyleneimine and Other Aziridines," Academic Press, New York, N.Y., 1969, pp 26, 208, and references cited therein.
- Chlorination of 2-octanol with thionyl chloride and pyridine gave a more highly inverted chloride than when pyridine was absent: W. Gerrard and H. R. Hudson, *J. Chem. Soc.*, 1059 (1963).
 A. A. Larsen, B. F. Tuilar, B. Elpern, and J. S. Buck, *J. Am. Chem. Soc.*,
- (8) A. A. Larsen, B. F. Tullar, B. Elpern, and J. S. Buck, J. Am. Chem. Soc., 70, 4194 (1948).

Synthesis of 1,2,4-Triazoles from Tosylmethyl Isocyanide and Aryldiazonium Compounds¹


A. M. van Leusen,* B. E. Hoogenboom,² and H. A. Houwing

Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands

Received September 18, 1975


The coupling of diazonium salts and compounds XCH_2Y with an activated methylene group leads to formation of hydrazones. These reactions occur either without³ or with loss (i.e. the Japp-Klingemann reaction)⁴ of one of the activating functionalities X or Y. Ring-closed products are not usually formed in these processes.^{3,4}

As a continuation of our work on synthetic applications of tosylmethyl isocyanide⁵ (TosMIC, 1), we wish to report the synthesis of 1,2,4-triazoles from TosMIC and diazonium salts, according to eq 1. TosMIC accommodates, be-

sides an activated methylene, the isocyanide carbon as a second reactive site. This offers the opportunity to form cyclic products. Thus, a number of azoles (oxazoles,^{5a} imidazoles,^{5b} thiazoles,^{5c} and pyrroles^{5d}) has been synthesized previously from TosMIC and C=O, C=N, C=S, and C=C containing substrates.⁶

It now appears that the N \equiv N triple bond of diazonium salts also is capable of undergoing cycloadditions with Tos-MIC²³ to give 1-aryl-3-tosyl-1,2,4-triazoles (2), together with minor amounts of the isomeric 1-aryl-5-tosyl-1,2,4triazoles (3). The construction of the 1,2,4-triazole nucleus by this method, i.e., by formation of the N₁-C₅ and N₂-C₃ bonds, has a precedent in the Einhorn-Brunner reaction of diacylamines and hydrazines.⁷ The formation of the main product 2 is explained by eq 2, in close analogy with mechanisms proposed for previous

TosMIC reactions.⁸ TosMIC anion 4 is assumed to attack the electrophilic β nitrogen of the diazonium ion, followed by ring closure and a proton shift to give 2.

Several pathways are conceivable for the formation of the isomeric side-product 3. These include, as an initial step, attack of TosMIC anion 4 at N_{α} rather than N_{β} of the diazonium ion, or, alternatively, attack at N_{β} by 4 through its isocyano carbon. Reaction through a diazotate anion, which also is present in the basic medium,⁹ seems less likely since no 2c (or 3c) was formed from benzenediazonium tetrafluoroborate at pH > 13.¹⁰ In fact, the formation of the triazoles 3 is the first illustration of a reversed addition of TosMIC to an unsaturated substrate.⁸

The reactions of TosMIC were carried out with a series of para-substituted benzenediazonium compounds, as well as with 3-pyridinediazonium chloride and α -naphthalenediazonium tetrafluoroborate (eq 1). As appears from Table I, that the highest yields of 2 were obtained from benzenediazonium salts with electron-donating substituents. A completely different reaction was observed with pnitrobenzenediazonium tetrafluoroborate (5e). Instead of triazoles, the only product isolated was N-tosylmethyl-pnitrobenzamide (6, 39%), apparently formed by nucleophilic displacement of nitrogen and hydration of the nitrilium ion¹¹ 7 (eq 3). For structural proof, 6 was prepared inde-

$$1 + 5e \xrightarrow{\text{base}}_{-N_2} \left[\text{TosCH}_2 N = C \xrightarrow{+}_{NO_2} NO_2 \right] \xrightarrow{+H_2 O} 7$$

$$7$$

$$TosCH_2 NHCO \xrightarrow{-}_{NO_2} NO_2 \quad (3)$$

pendently (62% yield) by a Mannich condensation of p-toluenesulfinic acid, formaldehyde, and p-nitrobenzamide.

Structural Assignment of 2 and 3. The ¹H NMR, ir, and mass spectra of the isomers 2 and 3, which were separable by preparative TLC, are consistent with the assigned structures (see Experimental Section). To differentiate between the substitution patterns in the isomeric triazoles,

Table 1	l
---------	---

		Compd 2		Compd 3		
Ar	x-	% yield	Mp, °C	% yield	Mp, °C	
a <i>p</i> -Dimethylaminophenyl	BF₄	94	177-178.5			
b p-Methoxyphenyl	Cl	. 80	144 - 145.5	12	141 - 142.5	
c Phenyl	\mathbf{BF}_{4}	40	120.5 - 122.5	18	112 - 114.5	
d <i>p</i> -Acetylphenyl e <i>p</i> -Nitrophenyl ^a	\mathbf{BF}_{4}^{T} \mathbf{BF}_{4}^{T}	28	169-171.5	9	133.5-135.5	
f 3-Pyridyl g α-Naphthyl	Cl ⁴ BF₄	15 38	168.5–174 <i>^b</i> 147.5–149.5	3	127-128	

^a No triazole formed; see text and eq 3. ^b Dimorphous.

Table II13C NMR Dataa of Triazoles 2c, 3c, and 8											
R_5 N_5 N_7											
			C ₃			Cs					
Compd	R ₃	$\mathbf{R}_{\mathfrak{s}}$	δ	¹ J _{С-Н} ^b	^з <i>J</i> С-Н	δ	¹ J _{С-Н} ^b	³ <i>J</i> С-Н			
8 2c	H Tos	H H	151.8 162.8	208 (d)	12.5 (d) 12.0 (d)	140.3 142.5	212 (d) 216 (d)	7.5 (d)			
3c	н	Tos	150.0	211 (d)		152.7		8.0 (d)			

^a Chemical shifts δ in parts per million downfield from Me₄Si; coupling constants J in hertz, multiplicity in parentheses. ^b For all other aromatic carbons ' J_{C-H} is 165 ± 5 Hz.

the ¹³C NMR spectra of **2c** and **3c** are compared with those of 1-phenyl-1,2,4-triazole (8, Table II). The ¹³C NMR spectrum of 8^{12a} has not been reported previously; however, the signals at δ 151.8 and 140.3 can be assigned unambiguously to the heterocyclic ring carbons C₃ and C₅, respectively. This is based on (1) a large ¹J_{C-H} (>200 Hz);¹³ (2) comparison with other 1-substituted 1,2,4-triazoles where C₃ is found at lower field than C₅.¹³ By necessity, the structures of **2c** and **3c** are then as indicated. The tosyl substituent causes a considerable downfield shift (11–13 Hz) of the carbon to which it is attached directly, but it hardly affects the chemical shift of the other ring carbon.

The structural assignment of 2c and 3c is further supported by uv. The λ_{max} of 3c shows a blue shift as compared with 2c, since the N₁ phenyl (in 3c) is twisted out of the plane of the triazole ring¹⁴ because of the vicinal tosyl substituent. Also, the ¹H NMR signal of the N₁ phenyl in 3c is almost a perfect singlet.¹⁵

Finally, the spectral evidence was corroborated by the following chemical conversions: (1) heating 2c with a solid mixture of NaOH and KOH gave 3-hydroxy-1-phenyl-1,2,4-triazole (9, 37% yield), which was identical with an authentic sample; (2) similarly, 3c gave in 40% yield the known 1-phenyl- Δ^2 -1,2,4-triazolin-5-one (10); (3) compound 2c was prepared recently in our laboratory by an independent route from N¹-phenyl-C-tosylformamidrazone and triethyl orthoformate.¹⁶

Experimental Section

The diazonium salts were prepared in the usual way.¹⁷ Tosylmethyl isocyanide (TosMIC, 1) was prepared by dehydration of *N*-tosylmethylformamide.¹⁸ All compounds 2 and 3 showed the usual ¹H NMR signals for the tosyl protons at δ 2.4 (s, 3) and an AB q (4) at δ 7.3–8.2.

1-p-Dimethylaminophenyl-3-tosyl-1,2,4-triazole (2a). A solution of TosMIC (9.75 g, 50.0 mmol) and p-dimethylaminobenzenediazonium tetrafluoroborate (23.5 g, 100 mmol) in a mixture of Me₂SO (200 ml), MeOH (160 ml), and H₂O (80 ml) was cooled in ice-salt. To the stirred solution was added in 45 min a solution of K₂CO₃ (10.5 g, 76 mmol) in 100 ml of cold water. After stirring for another 10 min the reaction mixture was poured in 4 l. of ice-water, almost saturated with NaCl. The precipitate was collected, washed with water, and dried. Column chromatography (alumina, CH₂Cl₂-THF, 3:2) gave 16.0 g (94%) of 2a, mp 172–175°. An analytically pure sample was obtained by preparative TLC (alumina, CH₂Cl₂), followed by crystallization from hot ethanol: mp 177–178.5°; ir (Nujol) 1335 and 1150 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 8.44 (s, 1, H₅), 7.56, 7.41, 6.80, 6.66 (q, 4, J = 9 Hz), 3.00 (s, 6); mass spectrum M⁺ m/e 342. Anal. Calcd for C₁₇H₁₈N₄O₂S: C, 59.63; H, 5.30; N, 16.35; S, 9.37. Found: C, 59.5; H, 5.3; N, 16.5; S, 9.5.

1-p-Methoxyphenyl-3-tosyl-1,2,4-triazole (2b) and 1-p-Methoxyphenyl-5-tosyl-1,2,4-triazole (2b) and 1-p-Methoxyphenyl-5-tosyl-1,2,4-triazole (3b). To a solution of TosMIC (683 mg, 3.50 mmol) in Me₂SO (11 ml), MeOH (16 ml), and H₂O (2 ml), cooled in ice-salt, was added K₂CO₃ (1.40 g, 10.1 mmol). After stirring for 15 min a diazonium chloride solution, ob-

tained from p-methoxyaniline (0.51 g, 4.1 mmol) in 10.6 ml of 1 N HCl and NaNO₂ (0.31 g, 4.5 mmol) in 10 ml of water, was added in 30 min. The work-up, analogous to 2a, resulted in the separation of 2b and 3b by preparative TLC on alumina, eluting successively with CH₂Cl₂-Et₂O-pentane (2:2:1) and CH₂Cl₂-Et₂O-MeOH (2: 2:0.01 and 1:1:0.01). Compound 2b was obtained as a pale yellow solid, 920 mg (80%), mp 142-145°. Crystallization from benzene gave an analytically pure sample: mp 144-145.5°; ir (Nujol) 1330 and 1140 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) & 8.49 (s, 1, H₅), 7.68, 7.53, 7.09, 6.93 (q, 4, J = 9 Hz), 3.88 (s, 3); mass spectrum M⁺ m/e 329. Anal. Calcd for C₁₆H₁₅N₃O₃S: C, 58.34; H, 4.59; N, 12.76; S, 9.74. Found: C, 58.3; H, 4.5; N, 12.7; S, 9.8. Furthermore, 140 mg (12%) of white 3b was obtained after one crystallization from benzenepentane, mp 138-140.5°. Another crystallization from benzenepentane provided an analytically pure sample: mp 141-142.5°; ir (Nujol) 1330, 1160, and 1145 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 8.04 (s, 1, H₃), 7.58, 7.42, 7.11, 6.95 (q, 4, J = 9 Hz), 3.91 (s, 3); mass spectrum M⁺ m/e 329. Anal. Calcd for C₁₆H₁₅N₃O₃S: see 2b. Found: C, 58.4; H, 4.6; N, 12.7; S, 9.8.

1-Phenyl-3-tosyl-1,2,4-triazole (2c) and 1-phenyl-5-tosyl-1,2,4-triazole (3c) were prepared, analogously to 2a, from TosMIC and benzenediazonium tetrafluoroborate. They were separated similarly to 2b and 3b by elution (twice) with $CH_2Cl_2-Et_2O$ -pentane (1:2:2) to give the following. (1) 2c (40%), mp 121-123° (from benzene-pentane). One more crystallization gave an analytically pure sample: mp 120.5-122.5°; ir (Nujol) 1330 and 1150 cm⁻¹ (SO_2) ; ¹H NMR (CDCl₃) δ 8.58 (s, 1, H₅), 8.11-~7.3 (m, 9); mass spectrum M⁺ m/e 299; uv (96% EtOH) λ_{max} 249 nm (log ϵ 4.32). Anal. Calcd for C₁₅H₁₃N₃O₂S: C, 60.05; H, 4.38; N, 14.04; S, 10.71. Found: C, 60.1; H, 4.4; N, 14.2; S, 10.6. (2) 3c (18%) (from MeOHpentane), mp 119.5-121.5°. Further crystallization from MeOHpentane and from Et₂O-pentane gave an analytically pure sample: mp 112-114.5°; ir (Nujol) 1325, 1165, and 1145 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 8.02 (s, 1, H₃), 7.56 (s, 5); mass spectrum M⁺ m/e299; uv (96% EtOH) λ_{max} 241 nm (log ϵ 4.24). Anal. Calcd for C₁₅H₁₃N₃O₂S: see 2c. Found: C, 60.2; H, 4.4; N, 13.9; S, 10.6.

1-p-Acetylphenyl-3-tosyl-1,2,4-triazole (2d) and 1-p-acetylphenyl-5-tosyl-1,2,4-triazole (3d) were synthesized analogously to 2a, from TosMIC and *p*-acetylbenzenediazonium tetrafluoroborate. The precipitate from the aqueous NaCl solution was washed with water, dried, and chromatographed over a column of alumina, containing 5% of activated carbon, using CH₂Cl₂-THF (10:1). The resulting solid was stirred with benzene-THF (2:1) to provide a first crop of near-white 2d, mp 165-168° (22%). The concentrated mother liquor was chromatographed according to the procedure for 2b and 3b, using CH₂Cl₂-benzene (7:3). Obtained were the following. (1) A second crop of 2d, mp 164–167° (6%, total yield 28%). Crystallization from EtOH and from THF provided an analytical sample: mp 169-171.5°; ir (Nujol) 1680 (C=O), 1335 and 1155 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) & 8.80 (s, 1, H₅), 8.22, 8.09, 7.92, 7.78 (q, 4, J = 8 Hz), 2.65 (s, 3); mass spectrum M⁺ m/e 341. Anal. Calcd for $C_{17}H_{15}N_3O_3S$: C, 59.81; H, 4.43; N, 12.31; S, 9.39. Found: C, 59.8; H, 4.6; N, 12.1; S, 9.4. (2) 3d, 9% of a brown-white solid, mp 128–132°. Crystallization from EtOH and from Et₂O-THF (2:1) provided an analytically pure sample: mp 133.5-135.5°; ir (Nujol) 1680 (C=O), 1320, 1165, 1140 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 8.25, 8.11, 7.85, 7.70 (q, 4, J = 8.5 Hz), 8.06 (s, 1, H₃), 2.68 (s, 3); mass spectrum M⁺ m/e 341. Anal. Calcd for C₁₇H₁₅N₃O₃S: see 2d. Found: C, 59.8; H, 4.5; N, 12.3; S, 9.4.

1-(3-Pyridyl)-3-tosyl-1,2,4-triazole (2f) and 1-(3-pyridyl)-

5-tosyl-1,2,4-triazole (3f) were prepared analogously to 2b and 3b from TosMIC and 3-pyridinediazonium chloride. No precipitate was formed by pouring the reaction mixture in the NaCl solution. Extraction with CH₂Cl₂ gave a black oil from which 20% of TosMIC was recovered by chromatography over a column of alumina with CH_2Cl_2 . Continued chromatography with $CH_2Cl_2 + 2\%$ of MeOH gave a dark brown solid which was stirred with benzene to yield 2f, mp 164-168° (11%). The mother liquor was concentrated and separated according to the procedure given for 2b and 3b, using CH₂Cl₂-Et₂O (1:1), giving the following. (1) A second crop of 2f, mp 164-167° (4%, from benzene-pentane); the total yield of 2f was 15% after correction for recovered TosMIC. Crystallization from EtOH gave an analytical sample: mp 168.5-174° (dimorphous); ir (Nujol) 1330 and 1145 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 9.07-8.97 (m, 1), 8.88-8.75 (m, 1), 8.72 (s, 1, H₅), 8.30-8.10 (m, 1), 7.70-~7.4 (m, 1); mass spectrum M⁺ m/e 300. Anal. Calcd for C14H12N4O2S: C, 55.99; H, 4.03; N, 18.65; S, 10.67. Found: C, 55.8; H, 4.1; N, 18.4; S, 10.9. (2) 3f (3%, based on recovered TosMIC), mp 124-127° (from benzene-pentane). An analytically pure sample was obtained after crystallization from benzene-pentane: mp 127-128°; ir (Nujol) 1340 and 1150 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 8.99–8.72 (m, 2), 8.13–7.90 (m + s, 2, H₃), 7.66–7.4 (m, 1); mass spectrum M⁺ m/e 300. Anal. Calcd for C₁₄H₁₂N₄O₂S: see **2f.** Found: C, 55.8; H, 4.1; N, 18.7; S, 10.5.

 $1-(\alpha-Naphthyl)-3-tosyl-1,2,4-triazole (2g)$ was prepared analogously to 2a from TosMIC and α -naphthalenediazonium tetrafluoroborate. A readily solidifying black oil was obtained, which was chromatographed over a column of alumina (benzene). The resulting brown solid was crystallized from benzene-pentane to give 2g, mp 144-146.5° (38%). Two more crystallizations from benzenepentane gave an analytically pure sample: mp 147.5-149.5°; ir (Nujol) 1330 and 1145 cm⁻¹ (SO₂); ¹H NMR (CDCl₃) δ 8.51 (s, 1, H₅), ca. 8.2–7.88 (m, 2), 7.77–7.5 (m, 5); mass spectrum M⁺ m/e 349. Anal. Calcd for C₁₉H₁₅N₃O₂S: C, 65.31; H, 4.33; N, 12.02; S, 9.18. Found: C, 65.0; H, 4.2; N, 12.2; S, 9.2.

N-Tosylmethyl-p-nitrobenzamide (6) was prepared analogously to 2a from TosMIC and p-nitrobenzenediazonium tetrafluoroborate. A dark brown solid was obtained, which was washed with CH₂Cl₂ and crystallized from acetone-pentane, yielding 39% of 6, mp 211-213.5°. Further crystallization gave an analytical sample: mp 206.5-207° (slight dec); ir (Nujol) 1645 (C=O), 1545 and 1345 (NO₂), 1325 and 1130 cm⁻¹ (SO₂); ¹H NMR (Me₂SO- d_6) δ ca. 10.0–9.7 (t, br, 1), 8.41, 8.26, 8.04, 7.90 (q, 4, J = 9 Hz), 4.94 (d, br, 2, J = 7 Hz); mass spectrum M⁺ m/e 334. Anal. Calcd for $C_{15}H_{14}N_2O_5S$: C, 53.89; H, 4.22; N, 8.38; S, 9.59. Found: C, 53.8; H, 4.4; N, 8.4; S, 9.5. This compound was identical in all respects with a sample prepared independently by the procedure of Olijnsma et al.¹⁹ for N-tosylmethylbenzamide; recrystallization of the crude product from acetone gave 6 in 62% yield, mp 203.5-204.5° (slight dec)

3-Hydroxy-1-phenyl-1,2,4-triazole (9). A powdered mixture of 1-phenyl-3-tosyl-1,2,4-triazole (2c, 450 mg, 1.51 mmol), NaOH (64 mg, 1.60 mmol), and KOH (136 mg, 2.43 mmol)²⁰ was heated for 10 min at 160°. The resulting brown solid was dissolved in 10 ml of an aqueous NaCl solution. After extraction with CH_2Cl_2 (10 ml), the solution was acidified to pH 1. The white precipitate was collected and stirred with CH₂Cl₂ (10 ml) to remove p-toluenesulfinic acid. The residual solid was collected, washed with water, and dried, yielding 9 (90 mg, 37%), mp 287° (subl). This compound was identical with an authentic sample, prepared by the method of Widman.^{12a}

1-Phenyl- Δ^2 -1,2,4-triazolin-5-one (10) was prepared from 3c analogously to the synthesis of 9. The aqueous solution with the reaction product was neutralized with dilute sulfuric acid. Extraction with CH₂Cl₂ gave 10 as a white solid after removal of the solvent in 40% yield, after one recrystallization from Et₂O-pentane, mp 180.5-182.5°. Compound 10 has the same melting point (reported 182-184°,²¹ 183-184°²²) and the same characteristic ir and ¹H NMR data as reported previously.²²

Registry No.—1, 39495-97-1; **2a**, 57428,35-0; **2b**, 57428-36-1; **2c**, 55860-44-1; **2d**, 57428-37-2; **2f**, 57428-38-3; **2g**, 57428-39-4; **3b**, 57428-40-7; **3c**, 57428-41-8; **3d**, 57428-42-9; **3f**, 57428-43-0; **5a**, 24564-52-1; 5b, 4346-59-2; 5c, 369-57-3; 5d, 19262-73-8; 5e, 456-27-9; 5f, 35003-14-6; 5g, 28912-93-8; 6, 57428-44-1; 8, 13423-60-4; 9, 4231-68-9; 10, 21434-16-2.

References and Notes

.(1) Chemistry of Sulfonylmethyl Isocyanides. 11. For part 10 see A. M. van Leusen, R. J. Bouma, and O. Possel, *Tetrahedron Lett.*, 3487 (1975).

- (2) On leave of absence from Gustavus Adolphus College, St. Peter, Minn., 1970-1971
- S. M. Parmenter, Org. React., 10, 1 (1959).
 S. M. Parmenter, Org. React., 10, 143 (1959).
 R. R. Philips, Org. React., 10, 143 (1959).
 (a) A. M. van Leusen, B. E. Hoogenboom, and H. Siderius, Tetrahedron Lett., 2369 (1972); (b) A. M. van Leusen and O. H. Oldenziel, *ibid.*, 2373 (1972); (c) O. H. Oldenziel and A. M. van Leusen, *ibid.*, 2777 (1972); (d) A. M. van Leusen, E. E. Hoogenboom, and D. van Leusen, *ibid.*, 2778 (1972); A. M. van Leusen, H. Siderius, B. E. Hoogenboom, and D. van Leusen, ibid., 5337 (1972).
- *Ibid.*, 5337 (1972). TosMIC also offers the possibility of converting ketones to cyanides and to α -hydroxy aldehydes: O. H. Oldenziel and A. M. van Leusen, *Tetrahe-dron Lett.*, 167 (1974), and preceding papers. H. J. Boyer in "The Structure and Reactions of Organic Compounds", Vol. 7, R. C. Elderfield, Ed., Wiley, New York, N.Y., 1961, p 438; H, Krauch and W. Kunz, "Organic Name Reactions", Wiley, New York, N.Y. 1664 in 143 N.Y., 1964, p 143.
- (8) See ref 5 and 6 and a review by D. Hoppe, Angew. Chem., 86, 878 (1974); Angew. Chem., Int. Ed. Engl., 13, 789 (1974).
 (9) E. S. Lewis and H. Suhr, Chem. Ber., 91, 2350 (1958).
 (10) TosMIC was recovered unconverted.
- (11) R. R. Schmidt and H. Vatter, Tetrahedron Lett., 1925 (1971); R. Knorr, Chem. Ber., 98, 4038 (1965).
- Chem. Ber., 98, 4038 (1965).
 (12) There is some uncertainty as to whether compound 9 has the 3-hydroxy-1-phenyl-1,2,4-triazole structure^{12a,b} or the tautomeric 1-phenyl-Δ⁴-1,2,4-triazolin-3-one structure.¹⁴ Since 9 only shows a very weak C=O band at 1725 cm⁻¹, unlike 10, which has a very strong C=O band at 1685 cm⁻¹, we feel that 9 exists predominantly in the 3-hydroxy form. (a) O. Widman, Ber., 26, 2612 (1893); (b) T. Eicher, S. Hünig, and H. Hansen, Chem. Ber., 102, 2889 (1969).
 (13) J. Eiguero, C. Marzin, and J. D. Roberts, J. Org. Chem., 39, 357 (1974), and references cited therein.
- and references cited therein
- (14) M. R. Atkinson, E. A. Parkes, and J. B. Polya, J. Chem. Soc., 4256 (1954).
- (15) P. Ykman, G. L'abbé, and G. Smets, *Tetrahedron*, 27, 5623 (1971); G. Garcia-Munoz, R. Madronero, M. Rico, and M. C. Saldana, *J. Hetero*cycl. Chem., 6, 921 (1969).
- (16) J. C. Jagt and A. M. van Leusen, Recl. Trav. Chim. Pays-Bas, 94, 12 (1975).
- (17) For diazonium tetrafluoroborates see A. Roe, Org. React., 5, 193 (1949).
- (18) O. H. Oldenziel and A. M. van Leusen, Synth. Commun., 2, 281 (1972); B. E. Hoogenboom, O. H. Oldenziel, and A. M. van Leusen, Org. Synth., In press; TosMIC has become commercially available recently. (19) T. Olijnsma, J. B. F. N. Engberts, and J. Strating, Recl. Trav. Chim.
- Pays-Bas, 86, 463 (1967).
- (20) Landolt-Börnstein, "Zahlenwerte und Funktionen (aus Physik, Chemie, Astronomie, Geophysik und Technik)", Vol. II, 6th ed, Part 3, Springer-Verlag, West Berlin, 1956, p 198.
 (21) H. Neunhoeffer, M. Neunhoeffer, and W. Litzius, Justus Liebigs Ann. Chem., 722, 29 (1969).
- T. Kametani, K. Sota, and M. Shio, J. Heterocycl. Chem., 7, 821 (1970).
- (23) Note Added in Proof. A very recent paper describes related reactions of methyl isocyanoacetate with aryldiazonium chlorides: K. Matsumoto, M. Suruki, M. Tomie, N. Yoneda, and Miyoshi, Synthesis, 609 (1975).

Chemistry of Diaminomaleonitrile. I. Selective Preparations of Monoformyldiaminomaleonitrile and **Imidazoles by Reaction with Formic Acid**

Yozo Ohtsuka

Sagami Chemical Research Center, Nishi-Onuma, Sagamihara, Kanagawa 229, Japan

Received July 14, 1975

The reaction of diaminomaleonitrile (DAMN) and formic acid depends critically on the conditions under which the experiment is performed. Bredereck and Schmötzer¹ have reported the reaction of DAMN in anhydrous formic acid under mild conditions (<35°C, within 5 min) to give monoformyldiaminomaleonitrile in 50% yield. This reaction is accompanied by formation of tarry materials; an intractable black syrup is obtained after prolonged reaction times or at higher reaction temperatures. On the other hand, heating a heterogeneous mixture consisting of DAMN, formic acid, and xylene gives a fair yield (61%) of 4(5)-cyanoimidazole-5(4)-carboxamide $(4)^2$ with little tar formation.

We have examined the reaction in several solvents and found that monoformyldiaminomaleonitrile (2), 4,5-dicya-